翻訳と辞書
Words near each other
・ Pusher (2012 film)
・ Pusher (boat)
・ Pusher (film series)
・ Pusher (railway station attendant)
・ Pusher (tennis)
・ Pusher (The X-Files)
・ Pusher 3
・ Pusher centrifuge
・ Pusher configuration
・ Pusher II
・ Pusher Love Girl
・ Pusher trailer
・ Pusherman
・ Pusheta Township, Auglaize County, Ohio
・ Pushforward
Pushforward (differential)
・ Pushforward (homology)
・ Pushforward measure
・ Pushihe Pumped Storage Power Station
・ Pushim
・ Pushin Forward Back
・ Pushin' Against a Stone
・ Pushin' Me Away
・ Pushin' On
・ Pushin' Too Hard
・ Pushin' Up Daisies
・ Pushin' Weight
・ Pushing Buttons
・ Pushing Daisies
・ Pushing hands


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Pushforward (differential) : ウィキペディア英語版
Pushforward (differential)

Suppose that φ : ''M'' → ''N'' is a smooth map between smooth manifolds; then the differential of φ at a point ''x'' is, in some sense, the best linear approximation of φ near ''x''. It can be viewed as a generalization of the total derivative of ordinary calculus. Explicitly, it is a linear map from the tangent space of ''M'' at ''x'' to the tangent space of ''N'' at φ(''x''). Hence it can be used to ''push'' tangent vectors on ''M'' ''forward'' to tangent vectors on ''N''.
The differential of a map φ is also called, by various authors, the derivative or total derivative of φ, and is sometimes itself called the pushforward.
== Motivation ==
Let φ : ''U'' → ''V'' be a smooth map from an open subset ''U'' of R''m'' to an open subset ''V'' of R''n''. For any point ''x'' in ''U'', the Jacobian of φ at ''x'' (with respect to the standard coordinates) is the matrix representation of the total derivative of φ at ''x'', which is a linear map
:\mathrm d \varphi_x:\mathbf R^m\to\mathbf R^n\ .
We wish to generalize this to the case that φ is a smooth function between ''any'' smooth manifolds ''M'' and ''N''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Pushforward (differential)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.